Search

Gas Adsorption Measurement Analysis of Surface Area and Porosity

Microtrac piacvezető cég, amely gáz- és gőzadszorpciós mennyiséget, BET felületet és pórusméret-eloszlást mérő különböző analizátorokat fejleszt, gyárt és forgalmaz. A készülékek pórusos és nem pórusos porok gázadszorpciós vizsgálatára képesek. A Microtrac termékeket világszerte használják kutatás-fejlesztési (K+F), minőségellenőrzési (QC) és minőségbiztosítási (QA) alkalmazásokban.

Mi az adszorpció?

Az adszorpció tanulmányozásának meglehetősen hosszú a története. Adszorpcióról szóló első tanulmánynak Fontana a faszén adszorpciós tulajdonságait taglaló, 1777-ben megjelent publikációját tekinthetjük. Adszorpciós készüléke ma az angol Nemzeti Történeti Múzeumban van kiállítva. A mai modern adszorpciós technológiát széles körben használják ipari folyamatok (pl. gáz- és gőzleválasztás) és finom anyagok jellemzésére.

Alábbi ábra az adszorpció egyik példáját mutatja be. Az ábra nem részletezi a kemiszorpció és a fiziszorpció közötti különbséget. Általában kemiszorpciónak nevezzük, ha az adszorbátum és az adszorbens közötti kölcsönhatás (pl. hidrogénhíd vagy sav-bázis kötés) olyan erős, hogy képes megakadályozni az adszorbátum leválasztását vákuum hatására az adott adszorpciós hőmérsékleten vagy szobahőmérsékleten. Fiziszorpcióval állunk szemben, ha gyenge a kölcsönhatás - főleg van der Waals erők révén. Az adszorbátum vákuum hatására könnyen leválasztható (deszorpció). Mostanában a "fiziszorpció" és "kemiszorpció" elnevezések helyett a "reverzibilis" és "irreverzibilis" jelölések jöttek használatba.

Adszorpció állapota

Adszorpció állapota

Gas adsorption is a fundamental analytical technique for evaluating the surface characteristics and internal structure of solid materials. Used across industries such as catalysis, pharmaceuticals, energy storage, and environmental engineering, gas adsorption reveals critical data on surface area, pore size distribution and porosity - key factors in performance and functionality.

Microtrac offers advanced gas adsorption analyzers and adsorption equipment designed to deliver precise, reproducible measurements that comply with international standards such as ISO 9277 and ISO 15901-2. Our instruments serve both R&D and quality control applications, enabling users to better understand and optimize materials.

Learn more about our full range of gas adsorption measurement solutions.

Why Gas Adsorption?

Gas adsorption involves the adherence of gas molecules onto the surface of a solid. This physical interaction, known as physisorption, forms the basis for characterizing materials with porous or high surface-area structures. By studying how much gas is adsorbed at different pressures, engineers and researchers can derive:

  • Specific surface area (via BET method and more)
  • Pore size distribution (via classical methods like BJH, or novel methods like GCMC or DFT models)
  • Total pore volume

These metrics are vital across multiple applications:

  • In adsorbents like activated carbon, surface area correlates with adsorption capacity
  • In catalysis, higher surface area typically means more active sites for chemical reactions
  • In batteries and fuel cells, pore volume and structure influence energy density and ion transport
  • In pharmaceuticals, particle surface area affects dissolution rate and bioavailability

Industries in Gas Adsorption Analysis

Methods and Standardization of Gas Adsorption Measurement

Core Technique: Volumetric Gas Adsorption

The most usual form of gas adsorption measurement is volumetric (manometric) physisorption. This method involves dosing a known volume of adsorptive gas (typically nitrogen or argon) into an evacuated sample cell and monitoring pressure changes as the gas adsorbs onto the sample's surface. The resulting adsorption isotherm—gas volume adsorbed vs. relative pressure (P/P0)—forms the basis for analytical models.

Key steps:

  • Degassing (Outgassing): Prior to analysis, samples are heated under vacuum to remove moisture and contaminants.
  • Cryogenic cooling: Most measurements use liquid nitrogen (77 K) or liquid argon (87 K) to maintain stable, low temperatures ideal for physisorption.
  • Equilibrium dosing: Gas is introduced incrementally until equilibrium is reached at each pressure step.

Microtrac's instruments support full automation of these steps with integrated degassing stations and precision dosing systems.

Standard Models for Data Analysis

BET Theory (ISO 9277)

The Brunauer–Emmett–Teller (BET) method is the gold standard for calculating specific surface area. It assumes multilayer adsorption and is applied to the linear region of the isotherm (typically P/P0 = 0.05–0.30; except type I isotherm). BET surface area is calculated from the monolayer capacity using:

  • Molecular cross-sectional area of the adsorbate (e.g. 0.162 nm² for N2)
  • Avogadro’s number
  • Ideal gas law constants (such us molar volume of gas at STP)

Microtrac systems support both single-point and multi-point BET analysis as per ISO 9277 and ASTM D6556.


BJH Method (ISO 15901-2)

The Barrett–Joyner–Halenda (BJH) method is used to determine mesopore size distribution by analyzing the desorption branch of the isotherm. BJH applies the Kelvin equation to correlate pressure changes with pore diameters, assuming cylindrical pore geometry.

Ideal for:

  • Silica gels
  • Porous glass
  • Mesoporous oxides


DFT, NLDFT & QSDFT

Density Functional Theory (DFT), non-local DFT (NLDFT), and quenched solid DFT (QSDFT) are advanced methods that model gas adsorption in porous materials based on statistical mechanics. Unlike BJH, which relies on certain assumptions about pore geometry and is limited in analyzing micropores, DFT-based methods can accurately account for a range of pore shapes and sizes, making them ideal for characterizing microporous materials such as activated carbon and metal-organic frameworks (MOFs).

  • Provides high-resolution pore size distributions
  • Applicable to a range of adsorbates and pore geometries
  • Built-in libraries in Microtrac software enhance accuracy


Choice of Adsorbate Gases

The selection of gas affects sensitivity and pore accessibility:

  • Nitrogen (N2, 77 K): Standard for BET and mesopore analysis. Well-characterized and widely accepted.
  • Argon (Ar, 87 K): Preferred for micropore analysis due to its non-polar nature and smoother adsorption behavior.
  • Krypton (Kr, 77 K): Used for low surface area materials (<1 m²/g). Its low saturation pressure increases sensitivity for small sample surfaces.
  • Carbon Dioxide (CO2, 273 K or 298 K): Ideal for probing ultra-micropores (<0.7 nm), which are often inaccessible to nitrogen at 77 K due to kinetic restrictions and slower diffusion rates.

Microtrac’s BELSORP series supports all of these gases, enabling flexible, accurate analysis across materials.

Microtrac Gas Adsorption Analyzers: Engineered for Precision

Microtrac’s portfolio of gas adsorption analyzers is designed to deliver maximum reliability, compliance, and ease of use. Key features include:

Multi-Sample Capability

Instruments like the BELSORP MAX X enable simultaneous measurement of multiple samples, reducing analysis time without sacrificing accuracy.

Integrated Software Tools

The BELMaster software provides:

  • Automated BET, BJH, t-plot, and Langmuir analyses
  • Comparison tools for overlaying isotherms
  • Customizable report generation
  • Most advanced pore size distribution analysis based on Grand Canonical Monte Carlo (GCMC), NLDFT and QSDFT methods

High Vacuum and Pressure Control

Our analyzers operate over a wide pressure range—from high vacuum (10-6 torr) up to ambient or even elevated pressures—ensuring accurate measurements across micro-, meso-, and macropores.

Compliance and Validation

Microtrac instruments support validation protocols (IQ/OQ), calibration standards, and data traceability required in regulated environments like pharmaceuticals and environmental labs. The wide range of Microtrac products can be used in compliance with FDA 21 CFR Part 11.

Innovation for Advanced Research

Microtrac’s continuous R&D focus ensures that our adsorption equipment meets evolving needs:

  • Helium-free void volume correction: Reduces errors in microporous sample analysis
  • High-pressure adsorption models: For hydrogen storage and methane capture studies
  • Vapor adsorption modes: For assessing hydrophobicity/hydrophilicity, useful in surface energy studies

Additionally, our global support team and technical experts are available to assist with method development, standard implementation, and complex data interpretation.

Conclusion: Precise Gas Adsorption Measurement for Confident Material Design

Gas adsorption is not just a laboratory technique - it is a gateway to understanding how materials behave in real-world applications. Accurate surface area and porosity data can inform:

  • Material selection
  • Product formulation
  • Regulatory approval
  • Performance optimization

Microtrac’s gas adsorption analyzers empower users to obtain this information quickly, reliably, and in full compliance with international standards. Whether you're testing catalysts, refining pharmaceutical powders, or exploring next-generation adsorbents, we have the adsorption equipment to support your goals.

Learn more about our Gas Adsorption Measurement instruments and how we can help you bring material innovation to life.

Frequently Asked Questions (FAQ)

What is gas adsorption used for?

Gas adsorption is used to determine surface area, pore size distribution, and gas-solid interactions. It is essential for industries like catalysis, energy, and pharmaceuticals.

What is the difference between physisorption and chemisorption?

Physisorption involves weak van der Waals forces and is reversible, while chemisorption involves stronger chemical bonds and is often irreversible. Both are studied using gas adsorption methods.

How do gas adsorption analyzers work?

Gas adsorption analyzers measure the quantity of gas adsorbed on a solid material at varying pressures. This data is used to calculate surface area and porosity using models such as BET or BJH.

What gases are commonly used in gas adsorption?

Nitrogen is the most common gas due to its inertness and consistency. Other gases like argon, CO2, or krypton may be used for specific materials and applications.